

Pitch shape modulates the time course of tone vs. pitch accent processing in Mandarin Chinese Zhaohong Wu zhw39@pitt.edu and Marta Ortega-Llebaria mao61@pitt.edu **Department of Linguistics, University of Pittsburgh**

Tone and pitch accent (PA) in Mandarin Chinese

- Tones in Mandarin Chinese differentiate meaning: *ma*1 "mother" vs. *ma*3 "horse".
- Four tones in Mandarin Chinese: static high-level Tone1 (55), dynamic rising Tone2 (35), dynamic falling and rising Tone3 (214), and dynamic falling Tone4 (51).
- In a tone language such as Mandarin Chinese, the same pitch contour -- e.g., an ascending F0 -conveys information about both lexical meaning via tones -- e.g., Tone 2 -- and sentence-level meaning -- e.g., question – via PA.
- Which information (tone vs. pitch accent) is processed earlier?
- Li, Yang, and Hagoort (2008) showed that tone violations elicited an N400 effect 90ms earlier than pitch accent violations during spoken discourse comprehension.
 - However, they did not control for specific tone shapes (i.e. the flat pitch of Tone 1, the ascending pitch of Tone 2, etc.).
 - Moreover, as they have suggested, to empirically establish the relative moments in time that tone and pitch accent perception take place, there is the need for a gating task, which we undertook in the present study.

Methods

Participants: 40 native Mandarin Chinese speakers, recruited at Nankai University in Tianjin, China Materials:

- 12 sets of short conversations
- Target word either sentence-initially or sentence-finally.
- Tonal variations of Target words: Tone1, Tone2, Tone4
- Pitch accent variation: either appropriate (PA when narrow-focus or no PA when broad-focus) or inappropriate (no PA when narrow-focus or PA when broad-focus)

Table 1. Two examples items with target words (underlined and in bold) either at the beginning or the end of the sentence, consisting of a question by Interlocutor A and a response by B

Interlocutor A (broad focus context):			Inter	Interlocutor A (narrow focus co		
他 说	什么?		他	正在	欣赏	
"What did he say?"				"What is he enjoying?"		
Interlocutor B (target word at the beginning of			f Inter	Interlocutor B (target word at th		
the sentence; Tone1):			sente	sentence; Tone4):		
花	很	漂亮。	他	正在	欣赏	
hua1	hen	piaoliang	ta	zhengzai	xinshang	
flower	very	beautiful	he	is	enjoy	
" Flowers are very beautiful."				''He is enjoying pictures . "		
	-					

Procedure:

• The auditory gating paradigm (Grosjean, 1980, 1996) run on E-Prime.

- Two responses per trial were collected: (1) decide either which tone the target word was or whether the
- target word was correctly pitch-accented or not, and (2) confidence-rating (on a 1-7 Likert Scale). Sentence-initial target words were segmented in 50ms increments starting from its end, and sentencefinal target words from its beginning.

Response sente	ence: tal zheng4zai4 xin1shar	ng3 <u>hua1</u> ("He is enjoying	, flowers.")
Full sentence	ta1 zheng4zai4 xin1shang3	<u>hua1</u> , 300ms	• gate presentation
Gate1	ta1 zheng4zai4 xin1shang3	← 50ms	
Gate2	ta1 zheng4zai4 xin1shang3	← 100ms	_
Gate3	ta1 zheng4zai4 xin1shang3	← 150ms	•
Gate4	ta1 zheng4zai4 xin1shang3	← 200ms	
Gate5	ta1 zheng4zai4 xin1shang3	← 250n	ns
····			

Figure 1. Illustration of how target words were segmented and presented incrementally

ontext): 什么? the end of the hua4 picture

- List 1: sentence-initial & List 2: sentence-final Orthogonally varied (1) whether List 1 and then List 2, or the opposite, and (2) whether tone and then pitch accent, or the opposite
- The order of the short dialogues within each block was randomized for each participant.

Grosjean, F. (1996). Gating. Language and Cognitive Processes, 11(6), 597-604. Li, X., Yang, Y., & Hagoort, P. (2008). Pitch accent and lexical tone processing in Chinese discourse comprehension: an ERP study. *Brain Res, 1222*, 192-200. doi:10.1016/j.brainres.2008.05.031

Results

Percentage.F0: how much pitch information in time (# of gates) was needed by a participant for correct isolation of tone or pitch accent, divided by the total # of gates of the target word with regard to pitch

Figure 2. Mean log-transformed Percentage.F0 per condition for sentence-initial and sentence-final target words; a higher value indicates more percentage needed for isolation

Discussion

the F0 contour displays the position for correct tone isolation, and the other (black) displays the position for correct pitch accent isolation.

• Results confirmed our hypotheses that tone shape modulates the time course of tone vs. PA processing.

- Sentence-initial
- No time advantage of tone vs. PA for Tone1 or Tone4 target words, but • a significant PA advantage for Tone2 words (F0 maxima is available in the very first pass, whereas more gates are needed for listeners to perceive a slope in the contour and thus establish the Tone2 identity, rendering a PA advantage)
- Sentence-final:
 - No time advantage of tone vs. PA for Tone1 target words, but
 - a significant tone advantage for Tone2 and Tone4 words (F0 maxima information is realized later, and
- especially later for Tone2 words, rendering a tone advantage)

• Evidence for parallel processing of tone (lexical) and PA (semantic and pragmatic) information during online spoken language comprehension.

References

Grosjean, F. (1980). Spoken Word Recognition Processes and the Gating Paradigm. *Perception* & psychophysics, 28(4), 267-283.